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PREFACE 

This report contains the text of a paper given at a Boundary Layer 

Transition Study Group meeting held at Aerospace Corporation, San Bernardino, 

California, July 11, 196?. The research reported here was begun in the 

Space Division of The Boeing Company and completed at the Boeing Scientific 

Research Laboratory. The author wishes to acknowledge several sources of 

assistance in the work described herein: to Mr. R. T. Savage of The Boeing 

Company, who worked with the author during the early stages of the stability 

work; to Dr. H. Fiedler of the Boeing Scientific Research Laboratories, for 

many helpful diftcussions related to the transition study, and for the 

specific suggestion that X might be related to the turbulence scale; to 

Dr. Arnold Goldburg of the Boeing Scientific Research Laboratories, who 

obtained for the author an appointment to the Boeing Scientific Research 

Laboratories to continue work on these studies; and to the Air Force Flight 

Dynamics Laboratory, under whose financial support the stability study was 

begun. 
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COMPRESSIBLE BOUNDARY UYER STABILITY BY TIKE- 

INTEGRATION OF THE NAVIER-STOKES EQUATIONS, AND AN EXTENSION 

OF BOONS' TRAI^SITION THEORY TO HYPERSONIC FLOW 

A. L. Nagel 

The Boeing Company, Seattle, Washington 

INTRODUCnON AND SUMMARY 

This paper presents results from two separate studies related to 

transition. The first part describes boundary layer stability calculations 

based on the direct numerical integration of the Navier-Stokes Equations with 

respect to time. The purpose of reformulating the stability problem in the 

present manner is to avoid the inherent linearization of the classical method. 

The study that led to the present results is viewed as the initial phase of 

the development of a numerical method capable of treating transition itself, 

although it is too early to say just how far into the transition zone the 
method can be extended. 

The first phase of such a study consists of developing adequate 

numerical techniques for the integration and for representing boundary con- 

ditions. Although the complexity of the basic equations precludes rigorous 

numerical analysis, it is believed that this first stage of development has 

been completed. Numerical experiments and comparisons between the present 

calculations and those obtained by other methods show the numerical inte- 

gration scheme reported here to be highly accurate. For example, it is shown 

that the amplification rates given by the present method agree with those 

given by the classical method over a range of Reynolds numbers encompassing 

both branches of the neutral curve. The resolution of the upper branch 

represents an especially severe test of the accuracy of the numerical scheme. 

In the purely numerical experiments, it is shown that the accumulated numerical 

error is much less than 0.1 percent after 1000 time steps and much leas than 

1 percent of the computed physical amplification occurring during the 3«me 
period. 

No survey of boundary layer stability results is given in this paper, 

since at the present time each calculation is restricted to a specific 

^mtmimmmmm mamimm mmmmämmmmimmm 
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combination of wavelength and Reynolds number, requiring many individual cases 

to be calculated in searching for the neutral curve. Rather, present efforts 

are directed toward the development of g more efficient method of determining 

critical Reynolds numbers, using the unique capabilities that the present 

method provides. One very simple and promising technique is described wherein 

the Reynolds number is varied during the calculation. It is shown that this 

technique can provide the entire amplification rate curve (for a constant 

wavelength) with a single calculation but, as might be expected, these results 

exhibit lag effects. The study of this lag effect continues, but it is to be 

noted that an analogous effect is expected to occur in actual flow experiments, 

due to the streamwise growth of the boundary layer. 

As an example of the ease with which more complicated flows can be 

analyzed by the present method, a calculation has been made that includes the 

nonlinear Reynolds stress effect on the steady flow profile. Although the 

distortion is small, it is found that the distorted profile is much more un- 

stable than was the original profile. Neither the variable Reynolds number 

calculations nor the addition of the Reynolds stress calculation required any 

appreciable increase in computer time over the simpler constant base-flow 

calculations. 

The second part of the paper presents an application of Emmons' tran- 

sition theory in hypersonic flow. Following Branons, it is assumed that 

transition begins with the formation of turbulent spots that increase in 

size as they are swept downstream, eventually merging to form a fully tur- 

bulent boundary layer. Based on experimental results, it is assumed that the 

shape and velocity of the turbulent spots r.re independent of the Reynolds 

number and that their size increase linearly with distance. An expression 

for the local intermittency factors is then derived, and a scaling rule for 

transition is obtained. A key factor in the scaling of transition data is 

shown to be the frequency of spot formation. A dimensional argument is used 

to obtain an expression for the frequency of spot formation, and that ex- 

pression is found to require the existence of a characteristic length that 

may be identified as the average spanwise spacing of the turbulent spots. 

Some well-known experimental and theoretical results are noted in support of 

the proposition that this characteristic length is not determined by the 
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local boundary layer flow, but for wind tunnel flow is related to the scale 

of freestream turbulence. In hypersonic wind tunnels, where the freestream 

turbulence has been shown to be prima sly due to noise radiated from tur- 

bulent boundary layers on the tunnel walls, it is predicted that the Reynolds 

number of transition on a flat plate model will increase as the O.ü power of th 

the Reynolds number based on the tunnel diameter. Hence, a normalized Reynolds 

number 

ReT = 
ReT 

TR^0-^ 

is proposed as a correlating parameter for hypersonic wind tunnel transition 

data. In any given wind tunnel of constant test section size, it is predicted 

that the transition Reynolds number on flat plate models will increase as the 

O.Ii power of the Reynolds number per foot. Thus, the present analysis pro- 

vides a possible explanation of the so-ca.lled "unit Reynolds number effect" 

that has been observed in many experiments related to boundary layer tran- 

sition . 

i 

■ 

The argument leading to the prediction of a tunnel diameter effect 

implies that there will be some effect of tunnel shape on transition, and so 

Re™ is not expected to correlate data from different wind tunnels unless the 

tunnels are geometrically similar. However, it is shown that data from two 

rectangular wind tunnels of different size but similar geometries are in close 

agreement when plotted in terms of Re»,, and that approximate agreement with 

data from circular tunnels is also obtained. 

■ 

The effect of leading edge sweep on transition was also investigated, 

assuming that sweep has no effect on any of the properties of turbulent spots 

or their rate of formation. This calculation is somewhat more speculative 

than those for unswept plates, since there are no published observations of 

the behavior of turbulent spots on swept plates. However, it is shown that 

the limited amount of data available is in good agreement with the theory, 

both as to the effect of tunnel unit Reynolds number and as to the effect of 

leading edge sweep0 Some data that appear to show a different sweep effect 

are shown to be influenced by the corners of the test model. When correction 

is made for the corner effect, the theory is brought into approximate agreement 

with these data as well. The correction for the comer effect does not involve 

■ 
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any additional assumptions, but merely accounts for the difference between 

the planform of the experimental model and that of the infinite-span swept 

plate assumed in the theory, 

A calculation of the effect of Mach number is attempted, assuming that 

a dimensionless frequency appearing in the theory is related the frequency 

of the most highly amplified Tollmlen-Schlichting wave. The predicted effect 

is in reasonable agreement with experimental results for Mach number from 

I4 to 8, but falls below the data at a Mach number of 10. There is good reason 

to believe that certain other parameters appearing in the theory are also 

Mach nmber dependent, and experimental evidence indicates that at least one 

of these (the spot velocity) is varying in a manner tha would improve the 

agreement at Mach 10. However, in the absence of definite information, the 

author prefers not to speculate on these possible effects other than to 

note that little variation in the additional parameters would be required to 

yield very close agreement. Similarly, in the absence of reported obser- 

vations of turbulent spots for other geometries, the author has not attempted 

to calculate transition trends for shapes other than sharp flat plates (with 

and without leading edge sweep) and flow-aligned hollow cylinders. There is 

no conceptual difficulty in making such calculations, however, and there is 

experimental evidence that the trends computed for flat plates also occur on 

other geometries and in hypersonic wakes. 

Some discussion of the implications of the present transition theory 

regarding the relation of winü tunnel data to those of actual flight is also 

given. It appears that either fllglit transition Reynolds numbers will be 

much higher than those obtained in wind tunnels or that a unit Reynolds number 

effect will also be observed in flight. In the latter event, it is pre- 

dicted that the in-flight unit Reynolds number effect will be a square-root 

relationship. 

■      MlWl 
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PART I 

CALCULATION OF THE STABILITY OF THE COMPRESSIBLE LAMINAR 

BOUNDARY LAYER BY TIME INTEGRATION OF THE NAVIER-STOKES EQUATIONS 

Pi 
I. 

The physical situation being analyzed here is the stability of a 

laminar boundary layer over a flat plate. The oncoming flow is uniform far 

upstream of the plate. The leading edge of the plate is normal to the flow, 

and the plate is of infinite span, so that the flow over the plate is two- 

dimensional. There is a thin layer of fluid (the boundary layer) near the 

plate wherein the velocity of the fluid decreases from its uniform value 

to zero at the plate surface. The flow in the boundary layer is basically 

steady and assumed known from boundary layer theory. The flow is compressible 

and its transport properties are functions of the temperature. The analysis 

is concerned with the behavior of infinitesimal disturbances to the steady flow. 

In the present study, the disturbances are considered known at some initial 

time so that the analysis becomes an initial value problem. 

Mathemctical Formulation 

The equations for the conservation of mass, momentum and energy for a 

two-dimensional compressible fluid may be written as: 

— = ufu.v, f/Hj 

(1) 

Also required are the equation of state. 

p = eRT 

^Symbols are defined in the Appendix. 
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and auxiliary equations for the fluid properties, e.g.. 

p  -^{T) 

For the present purpose, it is useful to decompose the flow into a 

steady laminar flow and unsteady perturbations. Such decomposition does not 

necessarily involve any approximation since every flow could be written in 

this manner» In particular, such decomposition does not necessarily imply 

linearization. The motivation for the decomposition in the present study is 

increased accuracy and easier interpretation of results; the equations them- 

selves are much more complicated than the original conservation equations. 

The decomposition also allows the use of approximate laminar flow solutions 

without introducing any time-dependent errors into the calculations. This 

is done by deleting all terms that involve only steady flow quantities, in- 

cluding their time derivatives, and is equivalent to assuming that the pre- 

scribed laminar steady flow satisfies the conservation equations exactly. 

The resulting equations are reproduced in Table I. 

Numerical Fonnulation 

For .numerical computation it is necessary to replace the differential 

equations of Table I by finite difference analogs. The first step in formu- 

lating the finite difference analogs is to replace the spatial derivatives by 

numerical forms. In the present method, the flow field is represented by an 

x-y plane, with x and y divided into uniform increments  Ax and  Ay. All 

calculations are carried out at the mesh points for which 

x = m•Ax 

y = n • Ay 

with m and n being integers. The increments.  Ax and  Ay, are uniform 

but not necessarily equal. Having set up the mesh array, three steps arr 

required for the numerical formulation: replacing spatial derivatives by 

finite difference expressions, replacing time integration by a suitable 

JiJteirinltmiiWiriiiinfMffl^ iiBimitMBiWftwmii^ 
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numerical scheme and devising satisfactory numerical representations of the 

boundary conditions. 

1. Spatial Derivatives 

Since the flow properties are known only at discrete points, it is 

necessary to approximate the flow field properties by functions that can be 

differentiated to obtain the required spatial derivatives. There exist 

infinitely many approximating functions that could be used that would all 

yield exact results in the limit as  Ax and  Ay anüroach zero. Since 

Ax and  Av must remain finite in any actual calculation, it is neces- 

sary to find that method that yields the best results for finite spatial 

increments. 

The most obvious and most commonly used approximating functions are 

polynomials, and polynomials were used in all of the present studies. A 

polynomial of degree n is u-iiquely determined by n + 1 conditions, which may 

be conditions on either the values or the derivatives of the polynomials. In 

numerical flow studies, the commonly applied conditions are that the poly- 

nomials agree with the values of the flow field properties at the surrounding 

mesh points. After some study, it was decided that polynomial curve fits 

should be used, and since no derivative higher than the second is required, 

three-point central difference formulae were used. It would appear that 

higher order polynomials should theoretically yield more accurate results, 

but the computations have not borne this out. 

Uncentered difference formulae were also investigated in some cases 

in attempts to suppress spurious mesh-frequency oscillations. It was found 

that the uncentered differences suppress such oscillations, but also cause 

systematic trends to appear. The direction of the trends were reversed when 

the direction of uncentering was reversed, proving that the trends were purely 

numerical effects. The use of uncentered differences was therefore dis- 

continued. The spurious oscillations were later found to originate at the 

boundaries and disappeared when the boundary condition equations described 

herein were used. 
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2o Time Integration Scheme 

As with spatial derivatives, there will also exist infinitely many 

numerical analogs for a given differential equation that are equivalent in the 

sense that all will approach the differential equation in the limit as the 

step size is decreased to zero. For finite step sizes, however, these schemes 

may have different properties, and again it is necessary to search for the 

method that yields the best results for a given amount of computer time. The 

requirements of the numerical scheme for the present study are unusually 

severe, since the physical problem under consideration involves a delicate 

balance between relatively large but opposing physical effects, and further, 

that balance may itself be unstable. 

Broadly speaking, numerical schemes are subject to two types of in- 

accuracy.  The first form, numerical instability, may occur when the increment 

in the independent variable (time, in the present study) exceeds some critical 

value. If the increments exceed this critical value, the numerical results 

oscillate erratically, usually with ever-growing amplitudes, and do not even 

approximate a true solution of the differential equation. If the step size 

is held sufficiently small to avoid numerical instability, it is still found 

that the computed results vary somewhat with step size. This effect is due 

to truncation error; that is, to the failure of the numerical scheme to In- 

clude all of the terms in the Taylor Series (abovt the time t) in stepping 

forward to the time t +  At. The truncation error can be reduced by 

increasing the order of the integration scheme or by further reducing the 

step size. Of course, the step size cannot be reduced indefinitely without 

making the number of calculations excessive. 

A rigorous analysis of the stability and convergence characteristics 

of the numerical analogs to the equations of Table I is precluded by the 

complexity of those equations. However, as discussed more fully in Reference 

1, two fruitful avenues are open: l) a thorough analysis of similar but 

simpler equations, and 2) numerical experiments with the complete equations. 

Thus, the individual engaged in a numerical study of the present type is in 

much the same situation as an experimentalist, having the ability to vary 

experimental parameters and having approximate theories for guidance, but 

lacking in absolute proof that his results are correct. 

i 
■ 
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Perhaps the most obvious numerical integration scheme is first order 

forward integration, which may be written as: 

Steps 1 - Us Calculate   dQl {?.&) 
d-t 

Steps 5 - 8:  Qc(t +At) = Oi(tj +At ^-
l      (2b) 

where the Q-^ stand for u, v, p , and H. However, the truncation error of 

this system is unacceptably large. As described in Reference 1, a much better 

scheme is obtained by merely altering the sequence of calculation as follows: 

1) Compute  4T-  and   4T-  (^ 2a) 
dt OX 

2) Update f>    and H (Eqn. 2b) 

3) Compute —-—   and  ——        (Eqn. 2a) 
at        öt     H 

k)    Update u and v (Eqn. 2b) 

By assigning integral time levels n to p and H, and time levels n + ^ to u 

and b, it was shown in Reference 1 that the resequenced scheme is a time- 

centered scheme but with some inconsistency in time levels. In the present 

scheme, which is given in Table II, this inconsistency is approximately cor- 

rected, although, as sLated in Reference 1, its effect appears to be very 

small. The approximate correction uses a previously-computed time derivative 

to remove the unleveling, and so requires only one additional multiply-and- 

add operation for each of the four dependent variables, with only a small 

increase in computing time. 

With the aid of simplified equations, four separate numerical stability 

criteria were identified, and subsequently, verified with computer experiments 

with the complete equations. They are: 

1) At< ]-5  Ax 

2) At< .-£+- 

obtained from the continuity equation and 

the inviscid part of the momentum equations 
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TABLE II: NUMERICAL INTEGRATION SCHEME 

I 
\ 

n+^i ..n+hi  n+4  n+ij 
Step 3.  p J = p|p  2, H  , u  , v M 

Step 6.  H   = h + At H 2 

Step 7.  u   = u J + 4At u 

Step 8.  v 
n+1 r^ + UAt ;n 

f 

Step 9. u 

Step 10. v 

Step 11. u 

n+l , n+l L.n + 1  n+l  n+l\ 
u(p  , H  , u  , v  1 

• / n + l 
v(p H  , u  , v 

n+3/2    n+4 J   s. -n 
= u  3 + At u 

.; 

C4.  J r   n  •   ^ 1 T i. •    n Mn -n-k ,",n-4  n+4  n+ij -n -n 
Stored from Previous Calculation: p , H , p  , H  , u  , v  , u , v 

Note: pn = p(nAt). p = || 
' 

Step 1.  p   = p + 4At p 

Step 2.  H ,n+li    =    Hn + 4At H0-15 

■,n+ 
Step 4.  H"   = H p"a, H 

n+4 un+4  n+i^  n+i^ 
, u ^, v Qj 

C4.  c   n+l    n , , „ -n+'-s 
Step 5.  p   = p + At p 

Step 12. v 
n+3/2    n+'-s _. 

= v   + At V 
n 
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3) At<|i' from the viscous part of the momentum 

equations 

h) At< 
yAx 

from the energy and continuity equations 

These limits were verified by comparing time histories computed for differing 

flow conditionc with various values of  At. 

With conditions for numerical stability determined, the question of 

accuracy can be considered. As already noted, the accuracy of the numerical 

integration scheme can be assessed by varying the time step  At and by com- 

parison with results of other methods. Comparisons with other methods will be 

given in the discussion of results. Comparisons are given in Table III that 

show the effect of halving  At, which, for the present integration scheme, 

should reduce the accumulated error by approximately 'Jiree-fourths. So large 

a change in  At is a rather severe test of the numerical scheme, but it is 

seen that after 1000 time steps this maximum difference is only .001, and is 

generally much smaller. Since the physical boundary layer amplification is 

approximately 16%  in the corresponding time period, the numerical integration 

scheme appears to be sufficiently accurate. 

Results for the same conditions computed with the earlier integration 

scheme are also presented in Table III. It is seen that while the differences 

are some four times larger than with the present method, the error is also 

much less than the physical amplification. 

3. Boundary Conditions 

Specification of boundary conditions is a crucial and difficult part 

of a numerical solution such as that described here, and a great deal of 

experimentation was required to obtain satisfactory forms. Difficulties often 

arise because the true boundary conditions are known only at points outside 

of the com;- ited array, as is the boundary condition at y-infinity in the 

present case. If the boundary conditions are expressed by derivatives, there 

will be many possible approximations which may be equivalent only in the 

limiting case of zero mesh size. 
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TABLE  III:    COMPARISONS OF  INTEGRATION ERRORS 

. * 
J u. for T = 

J 
500 Integrat ion Error 

Present Scheme of 

Scheme Reference 1 Effect 
Of AT 

Effect 
of 

Scheme AT = .5 AT = 1.0 AT = .5 

1 1.109 1.109 1.112 .. .003 

2 1.162 1.162 1.166 -- .004 

3 1.106 1.107 1.110 .001 .004 

4 1.079 1.079 1.082 -- .003 

5 1.076 1.077 1.080 .001 .004 

10 .6382 .6381 .6404 .0001 .0022 

16 .01171 .01191 .01169 .0002 .0002 

20 .2432 .2431 .2440 .0001 .0008 

30 .3131 .3178 .3191 .0003 .0010 

40 .2359 .2358 .2364 .0001 .0005 

60 .1259 .1259 .1265 -- .0006 

80 .07014 .07049 .07088 .0003 .0007 

100 .04499 .04539 .04569 .0004 .0007 

120 .03600 .03620 .03700 .0002 .0010 

j Uy) 

tu ÜI 
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One symptom of incorrectly formulated boundary conditions is the 

appearance of oscillations of wavelength 2 Ay. The oscillations increase 

in amplitude with time, and ultimately dominate the calculations. Similar 

oscillations occur in much simpler systems of equations than those used here, 

and it has been shown that in some cases they can be suppressed by using un- 

centered differences for spatial derivatives. That approach was not satis- 

factory, as already noted. Neither are any of the 'artificial viscosity' 

techniques that have been so successful in inviscid flow calculations, since 

the present study is entirely concerned with the effects 01' small amounts of 

viscosity. An apparently satisfactory smoothing technique was us^c in 

Reference 1, but it has since been found that with the conditions described 

below no smoothing is required. 

Wall Conditions; At the wall velocity fluctuations obey the usual 

boundary conditions from boundary layer theory and u' and v' are both zero. 

The temperature fluctuation is determined by the condition T + T1 = Tw. Thus, 

if the wall temperature does not respond to tho  temperature fluctuations, T' 

will be zero at the plate surface. The temperature response of the plate 

surface depends on the thermal diffusivity of the plate material. It has been 

assumed in the preser.'„ calculations that the plate does not respond, and since 

u1 and v1 are both zero, H' is also zero at the plate surface. With the 

present method, it would be easily possible to allow for finite thermal capac- 

ity of the plate, but no such calculations have been made. 

The wall boundary condition on density is obtained by a condition on 

pressure 

- o (h) 
w 

The density perturbation is then calculated by 

w (?) 

is not exactly zero because of viscous terms. 

ftrtmMliirar»nfi»ii^¥f'"'°^^^1^ 
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The pressure condition is approximated in the present study by a parabolic 

form: 

4P _ 3P, 
W  (6) 

The three conditions on the parabola are in agreement with the computed pres- 

sures at the two layers nearest the wall and the pressure derivative condition 

given above. Several other possibilities were investigated in the course of 

the present study, including time integration of the density, using the other 

boundary conditions. 

Condition at y-Infinity; The boundary condition at y-infinity must be 

replaced by a condition applicable at some finite value of y. This is done 

by using an approximate analytic solution for the region outside of the 

boundary layer, namely. 

O^ ^ e 
cxy 

(7) 

With this expression, values of u1 and H' are calculated for an additional 

layer yN + 1 (y = ymax -  Ay): 

and 
N-M     N 

(8) 

It was found that the outer boundary caused less difficulty if v,
N+1 is 

computed with a restricted form of the continuity equation: 

/     'A ^L ■  Av — 

(9) 

= < -Ay 

Condition (9) assures that  Aü  at the Nth layer will be small. 

■ . ■ , .: . 
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It was also found that if formulas like (8) are used to calculate 

Pli+l,  oscillations can be caused.    A parabolic extrapolation that agrees with 
(7) at y^+l is 

4P  — 3P 

3   +2aAy (10y 

Condition (10) is much less abrupt than (8) and has effectively suppressed 

spurious oscillations from all the cases that have been calculated. 

The approximate solution (7) is valid only for incompressible flow, 

but the relative consistency of the various terms (i.e.,  (8),  (9) and (10)) 

appears to be more important than the rate of decay assumed.    Hence, condition 

(7) has been used for all calculations shown in this report. 

Among the outer boundary condition schemes investigated was the use 

of backward differences.    Because &he coefficients appearing in uncentered 

difference formulae are larger than those for central differences, a more 

severe restriction on     A t is imposed.    Faxiure to observe this restriction 

does not cause instability of the entire array, but does lead to erroneous 

values at the boundaries that gradually spread inward.    With smaller time- 

steps the numerical effects are diminished, but no good scheme was found 
based on backward differences,, 

x-Boundary Conditions:    The x-derivative boundary conditions are not 

required in the present study.    Rather, it is assumed, as in classical 

stability theory» that all perturbations are in the form of traveling waves 

of a single wave number, ex     .     Thns,  «JC may write, for example 

"'(x^t)    =   u(v/t)    sLn|^(x-^o)_ (11) 

With the use of Eqn.  (ll)  the need for further specification of boundary 

conditions in the x direction is eliminated.    The x derivatives can be speci- 
fied simply and exactly as follows: 

rt i    i iViiiiMtiiniMfaiMrriwiniiifiriM^ ■iitiiiiillrtiiiiVitTtiiaiiiiiMiitiiriiMitiimitiiiHiriri ■wt-mimt"■'■-■■'■'■■■■ ^•*^^~*^^..*..i*~^**~.^^ 
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^    (*-^) =  «^.^j V^) 

(12) 

etc, 

Thus, it is necessary to compute the perturbation quantities at only two x 

locations separated by a quarter-wavelength,  and the amount of work involved 

in any particular computation is greatly reduced. 

Results of Stability Calculations 

No survey of boundary layer stability has as yet been made in the 

present study.     The method is still under development;  specifically, means 

are being sought for avoiding the tedious searching technique that is usually 

required to locate the neutral curve.    An example of a promising candidate 

for a more direct method will be shown.     Some cases that have been calculated 

are presented,  however, primarily as indications of the type of results that 

can be obtained by the present method.     In   order to allow direct comparison 

with results obtained oy the classical method, all terms containing products 

of perturbations have been deleted from the equations of Table I.    The basic 

flow is assumed to be parallel and independent of x.    The increments    Ay 

are 0.116   5*    and y        is llj  $* 

Since the present stability method is in the form of an initial value 

problem, it is possible to trace the development of an arbitrary initial 

disturbance into the    characteristic forms (eigen functions) given by the 

classical method.    Two examples of such development at a Mach number of O.h 

are shown in Figure 1.    In that figure,  the amplitude of the u1   perturbation 

is plotted as a function of distance above the surface for several early 

times.    Initially,  the boundary' layer is disturbed by a u'   pulse which is 

introduced at different heights in the boundary layer for the two cases shown. 

It is seen that the distribution soon spreads through the boundary layer, 

changing in distribution as time progresses.    Each of the ploi,3 has been 

normalized so that u^^ is unity,  and,   thus,   the figure does not present a 

true picture of the variation of disturbance amplitude with time.    The 

amplitude is,  in fact, decreasing rapidly during this formative period,  since 

^-■-"'»rTMAHJOffBteU 
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Y/6*   2 

Y/6*     2   - 

Figure  1 .     DEVELOPMENT OF DISTURBANCE PROFILES 

Me = 0-4-  \e,6* - 4000 
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even in an unstable boundary layer, it is only certain characteristic disturbances 

forms  that are ajnplifiod.     It will be  seen  thai   at  the   time of  Uie last plots 

shovn,  the distribution of disturbances within the boundary layrr had become 

very   similar in the  two cases  shown,  although the  initial  'üsturbances were 

different.    Tnis is,  of course,  exactly  the  type of behavior that is antic- 

ipated on  the basis of stability theory,  but would  be,  nevertheless,  very 

difficult to  calculate by the classical  (normal mode)   analysis. 

The  final plots of Figure 1 ao not represent the final disturbance 

profiles,  however,  although  from that time onward the results of  the two 

calculations are virtually indistinguishable.    An example of a final profile 

as obtained by the present method is  shown in Figure  2.     It should be noted 

that it is only the normalized disturbance profiles that have become "final." 

The amplitudes of the disturbances are exponentially increasing for the case 

shown,   since this calculation is for an unstable combination of wavelength 

and Reynolds number.     However,  when normalized by the maximum value of u' , 

the distribution of disturbance  velocities through the boundary layer is 

unchanging,  except at the outer edge of +he ^undary layer.    There a slight 

oscillation persists for   a very long time, and apparently represents the 

reflection and re-reflection of  sound waves between  the  surface of the plate 

and  the outer boundary  of  the computed flow field,  which,  as previously noted, 

cannot be allowed to extend to  infinity. 

Also  shown in Figure 2,  for purposes of comparison, is a disturbance 

profile calculated by the classical method,  and taken from a paper by Kurtz 

and Crandall (Reference 2).     Exact agreement is not  expected since the Kurtz 

and Crandall calculation is for compressible flow, while the present result 

is for a Mach number of O.li.       However, the differences are expected to be 

slight for small Mach numbers,  and it is seen that the two profiles agree closely 

except for a small difference in the vicinity of the boundary layer outer edge. 

The amplification rates obtained by the present method are compared 

with those of Kurtz and Crandall in Figure 3.    The two sets of computed 

amplification rates are seen to be in approximate agreement, with the present 

results being slightly lower.    This difference appears to be consistent with 

the effects of compressibility as given in previous studies.    The resolution 

of the upper branch of the stability curve represents an  especially severe 

■    ■> ^ : . : -■-*  
^,i--^,.^1-.........u^-t/». . 
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test of the numerical integration scheme and boundary conditions. This 

upper branch could not be obtained at the time Reference 1 was published. It 

is now known that this failure was due indirectly to the effects of the outer 

boundary condition assumed there, and the smoothing technique that was used 

to suppress the resulting oscillations. 

Figure Ii presents a calculation for a Mach number of 10. Only one 

case has been computed at present, which, as noted, is for a Reynolds number 

of U000. This case appears to be about neutrally stable, but a critical 

Reynolds number cannot be determined until several more calculations have 

been made.  Some Mach 10 calculations were also shown in Reference 1; it is 

now known that those cases had not yet converged, a possibility that was 

suggested in that report. 

The present effort in the development of the method is aimed at devel- 

oping a means of locating the neutral curve that avoids the necessity of 

performing discrete calculations at every point in the c^. -Re plane. One 

promising technique consists of allowing the Reynolds number to vary as a 

function of time by varying the density. An example of such a computation 

is shown in Figure ^  The Reynolds number at the beginning of the calcu- 

lations was 100, which is well below the critical value. The Reynolds number 

was then increased linearly with time until the end of the calculation. The 

history of the u1 perturbation amplitude exhibits a short-period oscillation 

superposed on a long term wavelike behavior. The short period oscillation 

is characteristic of calculations that have not yet stabilized; the long terms 

behavior appears to be the expected effect of the Reynolds number variation. 

Initially, while the Reynolds number is less than the critical value, it is 

expected that the disturbance amplitude should decrease. As the Reynolds 

number increases into the unstable range the disturbance amplitude begins to 

increase. When the Reynolds number is still further increased, the calculation 

crosses the upper branch of the neutral curve and the amplitude again begins 

to decrease. 

The slope of the amplitude curve indicates the amplification rate. Due 

to the short period oscillations the original amplitude curve will not give 

meaningful results, but by fairing a smooth curve through the calculated values. 

•JfliiriVir"'"^^' '■ - -'---  
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M =  10          Tw = -- T 
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R,+ =  4,000 ci . 0 

a/  =   1.13 
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Figure 4. DISTURBANCE PROFILES AT M = 10 
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O From constant Reynolds Number calculation 

1000 

Dlmensionless Time 

200C 
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500 2500 3000 1000      1500      2000 
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Figure 5. DISTURBANCE AMPLITUDE WITH LINEARLY INCREASING REYNOLDS NUMBER 
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a consistent set of amplification rates were determined. The values obtained 

are also shown in Figure 5, where it is seen that they are not greatly dif- 

ferent from those obtained from the constant Reynolds number calculations 

(Figure 3)« As might be expected, the varying tieynolds number results lag 

those obtained at a constant Reynolds number. 

It might be suggested that the Reynolds number should have been in- 

creased as a square-root function of the time in order to approximate the 

growth rate of the laminar boundary layer. Such a variation of Reynolds 

number with time is no more difficult to calculate than the linear variation 

used here, but would lead to much more rapid changes of Reynolds number at 

early times, and, it is felt, would yield less accurate results. The linear 

variation used here should be regarded merely as a mathematical artifice, and 

not as an attempt to simulate a physical effect.* It should be remarked that 

the varying Reynolds number calculation involved so little increase in com- 

puter time that no accurate determination of the increase could be made. 

As a final example of the present meonod, Figure 6 illustrates a non- 

linear effect, naniely, the effect of the Reynolds stresses associated with 

the disturbance waves. The initial boundary layer profile was the Blasius 

solution. At time zero, an initial disturbance of approximately J4O fps. or 

about 10^ of the freestream velocity was introduced. At the end of the 

calculation, the profile had distorted into the shape indicated by the solid 

curve of Figure 6. Although the distortion is slight, the rate of disturbance 

amplification had increased five-fold, as noted on the figure. As with the 

variable Reynolds number calculation, no appreciable increase in computer 

time was caused by the added calculations. 

In the case of classical method. Dr. R. C. Gunness, of The Boeing Company, 
has re-examined the order of magnitude and significance of the streamwise 
space derivatives which are generally omitted (parallel flow assumption). 
It was found that the parallel flow assumption is valid only when the spacial 
amplification rate times the Reynolds number is generally much greater than 
unity. This conclusion is supported by the experimental data of Laufer 
(Reference 2l4)who found a marked dependence of the amplification rates on 
the normal coordinate. The possibility that an extension of the criteria 
can be used in the present analysis to estimate the extent of the lag effect 
(due to the time variation of Reynolds number) is being investigated. 

iiMMftrnr mem 
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Figure 6.  EFFECT OF REYNOLDS STRESS ON MEAN VELOCITY PROFILE AND 

AMPLIFICATION RATE 
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Concluding Remarks - Stability Study 

The study described here is still in progress. The technique described 

is not intended so much as a new method for stability calculations as it is 

the first stage in the development of a transition theory. The calculation of 

stability is done primarily as a check on the accuracy of the method, and is 

a very severe test because of the relative smallness of the viscous terms. 

Indeed, a superficial analysis would suggest that the errors in the inviscid 

terms would be so large as to completely mask any Reynolds number effects. 

For the present purposes of comparison, the equations have been lin- 

earized by deleting all terms involving products of perturbations. However, 

calculations have been made with the full nonlJ^°ar equations to verify that 

the integration technique will work equally well, and all indications are that 

no further development of a purely numerical nature will be requirec. How- 

ever, in the nonlinear calculations that have been made, the nonlinear terms 

have been small. It is  possible that new numerical effects will arise when 

these terms are made larger. The deletion of the nonlinear terms was found 

to reduce the computer time by 2^ tu 33 percent. 

Other calculations have been made to verify that the restriction to 

sinusoidal disturbance wave? is not essential to the success of the method. 

In these calculations, several x-stations were used and the derivative expres- 

sions of Eqn. (12) were replactd by central difference formulas. These cases 

also appear to be working well. 

It still is to be determined how far into the transition region the 

calculation can be extended. The present linearized calculations require 

about 20 minutes of computer time (UNIVAC 1108) for a single combination of 

oc - Re, beginning from a pulse disturbance (as in Figure l). This can be 

reduced to about 10 minutes if the final profiles from a previous calculation 

are used as initial values. Thus, it may appear that the method has about 

reached its practical limit. However, it has also been shown that additional 

physical complexity does not necessarily require large increases in computer 

time. A preliminary analysis indicates that a three-dimensional calculation 

of the Benney-Lin type (References 10 through 13) would require only two to 

four times as much computer time as the present calculations. Such an 

m^^^mam .■.-...^..■.^^■^.■^rt«i«m.a^^   
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increase would not make the calculation infeasible, particularly considering 

the steady increases in computer speed that has occurred in the past. 

As discussed in Benney's papers, the Benney-Lin flow model may be 

adequate to bridge the gap between the linear stability region and origin of 

turbulent spots. Beyond that point, the flow is apparently fully turbulent 

for some fraction of time, and one cannot now foresee the extension of the 

present technique into even localized regions of turbulence.  However, as 

shown in the second portion of this paper, there is good reason to believe that 

the transition zone may be amenable to more traditional methods of analysis. 
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PART II 

AN EXTENSION OF EMMONS'   TRANSITION THEORY 

TO HYTERSONIC FLOW 

In 1950, Emmons   (Reference 3), discovered that subsonic transition 

began with the appearance of small regions of turbulence ("Emmons Spots") 

in the laminar flow.    The spots,  or bursts, were observed to travel down- 

stream at a uniform velocity,   increasing in size but preserving their shape. 

Near the leading edge the spots were widely spaced,  and were entirely sur- 

rounded by laninar flow      Downstream they merged to form a completely tur- 

bulent boundary layer.     Emmons'  sketch illustrating spot behavior is 

reproduced below; 

Frc. 4,    Transition on n fl.it plate. 

More recent experiments,   including those by Schubauer and Klebanoff 

(Reference k) and Elder  (Reference 5) verified Emmons'  observations,  and 

added much detail information.     It was shown that spot formation is essen- 

tially "pointlike" in the sense that size of the spot is initially of the 

order of the laminar boundary layer thickness,  and it was also found that 

there are essentially no interaction effects between spots.    This latter 

characteristic insures that the intermittency factor at any point can be 

calculated by adding the effects of individual spots,  a property that is used 

in the present analysis.     The shape and growth rate of the turbulent spots 

are clearly independent of the Reynolds number,  since neither changes as 

the spot moves downstream. 

Turbulent spots have since been observed in supersonic and hyper- 

sonic flows.    Many shadowgraphs showing bursts at Mach numbers from about 

3.7 to 7 are presented by C.  S.   James in Reference 6.     In all cases the 

turbulent spots appear to travel downstream at a uniform speed,  and to grow 

■ 
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laterally at a rate that is also constant,  so that the area swept out by 

any particular spot is a triangular region as Emmons had sketched.     James 

also found that the shape of the turbulent spots was very similar to those 

observed in subsonic flow.    The angle,  tan     a, that defines the zone of 

influence appears to be nearly independent of Mach number as well,  since 

it was found to be about the same in James'  observations at Mach 3.7 as 

in the subsonic observations — about 10 degrees.    There is  some suggestion 

in James'  data that a may decrease at higher Mach numbers,  however. 

Emmons'   and James'  observations differ significantly as to the origin 

of the spots.    Emmons observed them forming in the laminar flow well down- 

stream of the leading edge, while James concluded that in his experiments 

the spots had been formed near the leading edge. 

Analysis 

In Reference 5 Emmons also formulated a probabilistic theory of tran- 

sition,  assuming that spots are formed randomly within the laminar region. 

In his theory the boundary layer is considered to be fully turbulent at a 

point if a spot is present and otherwise completely laminar.     Thus, there 

is no transitional boundary layer as such,  only a time-averaging between 

the laminar and turbulent states.     There was not at that time sufficient 

data to subject Emmons1  theory to any quantitative comparisons with experi- 

ment.    Later,  however, Dhawan and Nexasimha (Reference 7)  showed that the 

measured distribution of intermittency through the transition region as 

reported in Reference k could be predicted by Emmons' theory,   if all spots 

were assumed to form BIOOP; a line parallel to the leading edge,  rather than 

throughout the laminar region as Emmons had assumed.    They also showed that 

Many of the properties of the boundary layer in the transition region could 

be calculated by appropriate time-averaging of the laminar and turbulent 

boundary layers. 

The following calculation differs from those of References 5 and 7 only in 

the assumptions made regarding the formation of turbulent spots.    The nomen- 

clature of the analysis is illustrated in the sketch below: 

MtÜUÜta mj^^g^nnüji^iigiiiigin i . 
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ctory 

The surface over which the boundary layer develops may be considered 

as either an unswept flat plate of infinite span or a hollow cylinder aligned 

with the freestreara flow.  It is assirned that all spots are formed at a 

particular value of x, namely x , The flow in the region x < x is laminar, 

and, therefore, can be scaled by Reynolds number similarity.  Downstream of 

x the assumptions regarding the behavior of turbulent spots determine the 

results of the analysis. The assumptions used here are the same as those 

of References 3 and T,  namely, the spot velocity, shape and growth rate are 

independent of the distance, and in particular, independent of the unit 

Reynolds number. 

Now, let £■ fz,, Zp, p) be the fraction of time that the point p is 

covered by at least one spot formed in the portion of the line x = x bounded 

by z and z~.    As in Reference 3, it is assumed that the spots are entirely 

■ ■ 
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independent^ but that if two spots are present at p simultaneously, only the 

first to arrive is included in calculating y . These assumptions imply the 

following relation for   ^    (provided   A2  is small); 

which is analagous to Eqn.   (2)  of Reference 3.    Taking the limit as AH.-^O 

yields: 

\-r(~OOlZt   ,J3)       a: h^'M-t^o^At^^ ) 
By taking   Az sufficiently small the spacing in time  (and hence the 

spacing in distance) of the spots formed in the region z  <   z < z,  + A z 

can be made sufficiently large that the spots will remain distinct in the 

region of interest,  namely, x ^ x .    Then   B"   (z.,   z    +   A z, p) can be 
y j-     x. 

\ f "A, (- 

written: 

y (z0) Zo + Az, >p) = Y~r *a-*uMt 
/C (15) 

where f* is the instantaneous rate of spot formation per unit z, x,  is value 

of x    for which the downstream edge of the spot reaches p, x    is the value 

of x    when the upstream edge of the spot passes over p,   and c is the spot 

velocity dx /dt.    Since the spot velocity and shape are independent of time, 

Eqn.   (15) can be simplified to: 

* (z, , z.+Az ^) = (XVX")(V dz) (16) 

where f* is the mean spot formation rate,  defined by 
pt2 

-F*   = 
f*dt 

tz-t, 
(17) 

The mean spot formation rate is assumed to be uniform, in the sense that 

Ail 
at 

ill =  o (18) 

mmm tuririMiir'' 
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With (16) and (18), Eqn. (l^) i 

* Cf)  = 1 _ evp 

s easily integrated to yield; 

X 

^-< 

71  /xd u 
y^ 

-  eyp T*  f 

^ib:t:::::?:: zzot ^ - ^ -- * 
(19) 

a spot 

r 
(xd-xu)dv    =   (xp-x0)2c< 2 _.2 xj-^, 

(Xp-^J0*       (Xp-X0)w (20) 

= (X
P - Xo/oTcr 

x2^,2. 

(21) 

where «7- now depends only on the shape of the spots. Using (21), and noting 

that because of (18) there is no dependency of 0 on z,   (19) can be written 
as 

1- 

; 

y(X)  =,-^f^ (Xp-^)W (22) 

It will now be seen that if f* were known, it would be possible to 

predict transition, since a, c and cr are all known with good accuracy from 

the Reference k  experiments. Even though f* is not known explicitly, 

dimensional analysis leads to the following useful relation; 

i*   = (23) 

In (25) f is a dimensionless frequency and as such may be a function of any 

of the usual dimensionless numbers of fluid mechanics. The second factor, 

A^, must have the dimensions of length.  It may seem appropriate to select 

some characteristic model dimension here; however, it will be advantageous 

not to do so.  It can readily be seen that "X z must, in fact, be a measure 

of the average spanwise spacing of the turbulent spots, and its relation to 

other physical quantities will be discussed a little later. Now, combining 
(22) and (23) yields: 

■ 

■ 
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{2k) 

As in Reference 3,   "transition" is defined as the attainment of a 

particular value of  tf   .    The actual value  is  immaterial,  since the condition 

y   = ^     is sufficient to obtain a transition scaling rule.    If x    is the 

value of x at which y   = f   ,  then 

^U^   (xT-x0)V^  =   ,/^x   3COMST (25) 

•z^x»;        ^ V^T-» 
from which 

ReT -R
,e0 = =  Ue(xT-x0)   _ ■<, \ 

~^-g—   ~    VT-iyr ^e^2-?^     (26) 

Eqn. (26) implies the following form for Re 

(coKi^yn 

'T' 

e. 

According to (27),  it will be seen that Re    will be constant only if 

the Reynolds number based on   ^   is constant. 

Available Information for   A =* 

The lateral scale length X^iis a measure of the relative importance 

of three-dimensional effects in transition;  if   "X ^   is small, the flow must 

be highly three-dimensional.    Although there has been some controversy over 

the interpretation of experimental results,  there is general agreement that 

the flow becomes highly three-dimensional prior to the appearance of turbu- 

lent spots.    In the experiments of Reference 8,  for example,  it was found 

that both the  "steady" boundary layer and the Tol "Imien-Schlichting distur- 

bance waves possessed a spanwise periodicity with more or less regularly 

spaced "peaks" and "valleys".    It was noted that turbulent spots were created 

.jlMlMMaMiäaiiMttMiM^liiiiairiiiiliM^ "    '' rm-^miiäaiäami^ ,  -^nrnM^ tin-inmrhriiu-Mmiiiii-tinriiiiilfniliiiini 
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only at the peaks, and never at the valleys. Hence, the spacing of the peaks 

can be identified with the lateral spacing parameter, "A z , of the present 

analysis» 

The factors that determined the spacing of the peaks and valleys in 

those experiments could not be clearly identified, however. Attempts to 

determine these factors are described in Reference 8, including varying the 

Reynolds number, changing the plate angle-of-attack, refinishing, and finally 

entirely resurfacing the plate, without causing significant changes in the 

locations of the peaks. It was also shown that the effect was not due to 

the vibrating string mechanism that was used to initiate Tollmien-Schlichting 

waves in some of the experiments. The only factor found to affect the peaks 

and valleys was the turbulence-reducing screen system ahead of the test 

section. Cleaning these screens was found to alter the location, but not the 

spacing, of the peaks. In a later study, Klebanoff, Tidstrom and Sargent 

(Reference 9) concluded that the three-dimensional behavior is an authentic 

characteristic of transition, and not to be attributed to deficiencies in 

previous experimental techniques. 

Some theoretical studies of three-dimensional effects have been made, 

one of the earliest and most far-reaching being a theorem by Squire (Refer- 

ence 23) to the effect that linear three-dimensional disturbances in an 

incompressible boundary layer are more stable than two-dimensional distur- 

bances. Nonlinear three-dimensional analyses have been made by Benney and 

his colleagues (References 10 through 13) that consider the interaction of 

two-dimensional disturbance waves with vortices whose filaments are parallel 

to the freestream. The complexity of the mathematics involved has necessi- 

tated a number of simplifying assumptions regarding the flow field, and the 

analysis is limited to incompressible flows. Nevertheless, the calculated 

results show many points of similarity to the experimental results of 

Reference 9)  suggesting that the most important physical processes (for low 

speeds, at least) may be those considered by the theory. For this reason, 

it is perhaps highly significant that the theory does not yield a critical 

spacing for the streamwise vortices. The failure of the theory to identify 

,. 
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a critical lateral spacing suggests that the spacing is not determined by 

the stability equations, but is somehow imposed by the boundary conditions, 

either at the model or in the freestream. Since the Reference 8 experiments 

eliminated the model as the source of the preferred spacing, some effect of 

the testing facility is indicated. The facility of course exerts a major 

influence through the characteristics of the flow it provides, and it is 

well known that turbulence always exists in wind-tunnel flows.  Turbulence 

is characcerized not only by its intensity, but also by a characteristic 

length, the turbulence scale, which is a measure of the size of the turbu- 

lent eddies. The existence of a characteristic length in both the freestream 

flow and in the boundary layer suggests that the two are somehow related. 

Indeed, since the Tollmien-Schlichting waves are often initiated by free- 

sLream turbulence, it would be expected that these waves would exhibit span- 

wise variations in amplitude, more or less proportional to the spanwise 

variations in the intensity of the initial disturbances. The apparent 

insensitivity of the peak and valley spacing to flow conditions is consistent 

with the conjectured relation between "X 2 and the freestream turbulence 

scale, since turbulence scale tends to depend on the physical dimensions of 

t he flow field rather than on its velocity or density. 

The Unit Reynolds Number Effect 

If it is assumed that ^. g. is proportional to the freestream turbulence 

scale, which is in turn assumed to be independent of the flow conditions, it 

will be seen that Eqn. (27) requires Re to increase with the unit Reynolds 
U 

number   —       .    The effect will be small in the usual subsonic experi- 

mental conditions, however. In the experiments of Reference h,  for example. 

Re was found to be about 3 x 10 . and transition was comp.le-,e at a Reynolds 
0 6 

number of about k x 10 ,    If x,^ is defined at the mid-point of the transition 

region, then Re^ - Re is only about 5 x ICr, and that according to Eqn. (27) 

doubling the unit Reynolds number would produce only about 5 percent change 

in Rp_. It is not surprising that the unit Reynolds number has not been 

recognized as a necessary parameter in correlating subsonic transition data. 
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.ows 

Laufer,   in  Reference Lk,   has  shown that  in  a supersonic wind tunnel, 

the  freestreaffl turbulence   is  almost entirely due  to disturbances radiated 

from turbulent boundary layers  on the tunnel walls.     This  observation aJLlo 

a theoretical estimate  of the ^£ ,   assuming again that ^ is determined by 

the tunnel turbulence  scale,   since  the   turbulence  scale of the turbulent 

boundary layer should be  proportional to the  boundary layer thickness.     Thus, 

~Xz will be proportional to SBL    ,   the boundary layer thickness,  which, 

according to turbulent boundary layer formulas,   scales  as 

- z 
) 

Taking^ proportional to SBL; Eqn. {?7)  becomes 

R 

(28) 

(29) 

Eqn. (29) appears to have an even weaker dependency on the tunnel 

diameter Reynolds number than in subsonic flows.  However, in the hypersonic 

experiments of Reference 6, turbulent spots were observed forming a local 

Reynolds number of only 0.5 v 1C to 1.0 x 10 , while transition data from 

similar experiments 'Reference 5) show that transition occurs at Reynolds 

numbers of 8 x 10 to 15 x 10 .  The relative magnitudes of x end x implied 

by these data indicates that the first term of Eqn. (29) is negligible, and 

Re will vary strongly with the tunnel diameter Reynolds number. Numerical 

calculations show that for the case just described, the second term of (29) 

may be neglected entirely, leading to 

There being no variation of c/Ue, f, a or cr with unit Reynolds number, Eqn. 

(30) predicts an apparent "unit Reynolds number effect" in natural transition 

data from any particular wind tunnel. 

A strong unit Reynolds number effect has in fact been observed in 

many experiments, involving many different wind tunnels and model geometries. 
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Representative boundary layer transition data for flow-aligned hollow cylinders 

are plotted in Figure 7 as a function of the unit Reynolds number. By com- 

paring the slopes of the data curves with that given by the theory, it is 

seen that Eqn. (30) is in good agreement with the experimental unit Reynolds 

number effect. 

Some additional data, including some for other geometries, are presented 

in Figure 8. This figure is taken from Reference 1$,  and is unaltered except 

for the addition of the theory curve. Again, it is seen that the unit Reynolds 

number trend is well predicted. 

According to the present analysis, confirmed by experimental results, 

the dimensionless group 

E^T - Rey/iReJ'11 (31) 

is the proper correlating parameter for boundary layer transition data from 

hypersonic wind tunnels, and this parameter will be used for the remaining 

comparisons. He™ cannot be expected to provide exact agreement between data 

from different wind tunnels unless the tunnels themselves are geometrically 

similar. The disturbances that actually cause transition on the model may 

originate upstream of the test section, and so will be affected by the angle 

of nozzle divergence, for example. 

Two sets of directly comparable data are presented in Reference 16, 

however, wherein the same model was used in two similar wind tunnels of dif- 

ferent sizes. The data were obtained at a Mach number of li, and are for the 

point of maximum surface pitot pressure. It is shown in Figure 9 that the two 

sets of data are brought into excellent agreement by the use of Re™, and 

further, that the experimental value of Rex is independent of the unit Reynolds 

number. By comparing Figure 9 with the final figure it will be seen that 

EeT may also provide good agreement of data from different facilities, a 

fortunate result which may be ascribed to the insensitivity of turbulent 

boundary layers to the effects of geometry and pressure gradients. 
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Figure 7. EFFECT OF UNIT REYNOLDS NUMBER ON TRANSITION 
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Effect of Leading Edge Sweep 

The calculation described in the previous section has been extended 

to the case of a swept,  two-dimensional flat plate, assuming that the local 

flow direction remains parallel to that in the freestream, with the result 

that the variation of Rey with Rejj is predicted to   be independent of sweep. 

Therefore, Ref/CReo) •'4 should serve as a correlating parameter fcr swept 

plate data as well.    The experimental results of Reference 17 confirm this 

conclusion, as is shown in Figure 10.    The two  sets of data shown are for 

the points of minimum and maximum surface pitot pressure as determined by 

a streamwise survey with a moving probe as near to the surface as the equip- 

ment will allow.    The scatter in the correlated data is scarcely greater 

than that in the original data at a given unit Reynolds number, as may be 

seen by examining the data for individual conditions. 

To calculate the effect of sweep on the transition Reynolds number, 

further information is required.    The dimensionless frequency f may vary 

with sweep, and the spots may become asymmetrical or the angle a  may be 

altered.    Unfortunately, no data are available regarding these possible 

effects.    However, if it is assumed that sweep has no effect on f, ex  or the 

other quantities entering into (29), the calculated sweep effect is: 

^iA   =  yO-^tcrA/v)    COSTV (32) 

Eqn.  (32) is relatively independent of either  ex or cr  for sweep angles less 

than about 60 degrees.    For the present comparisons  ex is assumed to be 10 

degrees, the value    assumed by Emmons, although there is some reason to believe 

that o<  is somewhat less at the Mach number of this comparison,,    For   A   <     !?7 

degrees, it is estimated that the maximum effect of cr will be less than 5 per- 

cent increasing to about 20 percent at A  - 75 degrees.    In that same range 

a change in  Of of 2 degress would produce about the same changes.    Of course, 

Eqn.  (32) breaks down entirely for Of.    >   90 - -A_ . 

Eqn.  (32) is plotted in Figure 10 with the questionable portion indi- 

cated by dashes.    It is seen that the data agree very well with the beginning 

transition for sweep angles up to about 60 degrees.    The end transition data 

are consistently above the theory, however.    It is, of course, entirely possible 

that the assumptions in the theory are not satisfied by the flow over a swept 

plate.    However, it will be seen from the geometric information given in 

lr»nWrtii^i°-'-fl^W^^'l(ifi:iito^ nil rr [fiiil-"^!1-    - ----^■'-^■^f-"---"-"^'^-"^-" jfantSt 



jp>nn^i«.j«.^^!i^'>iffiiii)|H^wiwanwi»;!iBiWLWWM*Wi »VW fllWBmwl!! ;W;I!1!.|HWMII ■JiiiiiJiwiiMijJirwiiaaf^-WH^w^w^^ 

45 

5 

UJ      CTi 
h- 
cC      II 
_l 
Q. 3 

o 

oo 
2: 
o II 

00 
UJ Q. >■ 

UJ UJ 
rr UJ . ^ 
(T -S: z: 
UJ O0 o 

«J- Q 
UJ h- « CD i—i 

< Q c/1 
UJ ?" 

»» <C 
UJ O Ql 
_J 2 t- 
(T »—< 
Z Q Q: 

n < < UJ 
ro UJ >- 

Q. _l < 
UJ _i 
UJ u_ 
•3 O >- 
oo Q: 

1— <r 
C_) Q 
UJ Z 
u_ r^ 

LO u. o 
i— UJ CO 

OJ 

en 

lrll^lrf^WiMiii^>ifllrint^1ll1l11^wl■f^:^^^'^"^^" " ■ i.-— ■ -   ■■ -' ■   - iit^i" rifNWi-liirtlih-ii'tfiiil^--'-'"'1'-''''-!-'"'"'"'-■■'^ "'"' " i-nMmäSaaniaükiatutäiUii 



■wwWiWWIuiiAUMyW^;W 
mammeimm "'wummimiimmmum i 

46 

Reference 17 that the "swept plate" was actually a rotated square plate. 

According to the present theory, most of the dt-ta would be affected by the 

comers of the plate, with the greatest effect at the lowest unit Reynolds 

and for the "end transition" data. The amount of the correction depends on 

the shape of the turbulent spots and the location of the pitot probe with 

respect to the comer. Neither are known with accuracy, but an approximate 

calculation of the comer effect has been made which is shown by the shading 

in Figure 10.  It is seen that the agreement is greatly improved. It is 

emphasized that the comer effect calculation is only a correction for the 

difference in model planforra between that actually used in Reference 17 and 

the ideal, two-dimensional swept planform assumed in deriving Eqn. (32) 

It should also be noted that Eqn. (32) assumes that the number of spots 

produced depends on the actual slant length of the leading edge rather than 

the projected length. The latter assumption leads to 

Pe^A.   _,/,..  P..  a 

R-T(^0 
f ac-tan A. (33) 

Eqn. (33) is also shown in Figure 10. Even without a correction for the 

comer effect, it is seen that Eqn. (33) predicts far too little reduction 

in Re-ji with sweep. 

Spot Production Rate and Stability Theory 

There is some reason to believe that the spot production rate will 

be related to the critical frequency given by stability theory. Subsonic 

experiments have followed the growth of instability waves until their break- 

down, and that waves of the Tollmien-Schlichting type have been found to 

exist until just before turbulence appears. Penney and Greenspan (Reference 

12), on the basis of theoretical calculations and the experimental results 

of Klebanoff, Tidstrom and Sargent (Reference 9) believe that a breakdown to 

turbulence will occur once each cycle of the Tollmien-Schlichting waves. If 

this is so, the spot production rate will be proportional to that of the 

*Eqno (33) was also obtained by Qnmons and Bryson in Reference 18. 
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Tollmien-Schlichting wave most unstable with respect to the breakdown 

process. There is at present no way to determine this most unstable fre- 

quency, but, in general, the unstable frequencies given by boundary layer 

stability theory decrease strongly with Mach number at hypersonic speeds. 

Lees and Reshotko (Reference 19) give an asymptotic rule for the most 

unstable frequency at high Mach numbers that may be written (in the present 

notation) 

-f 
I 

M' W 
This rule assumes that the viscosity is proportional to the temperature. 

A more complete calculation by Mack (Reference 20) gives results for the 

most highly amplified disturbance frequency for the limiting case of 

infinitely large Reynolds numbers. Mack's numerical results are well 

represented by 

r      I 
1.75 V\ 

in the range of Mach numbers from 1+ to 10. 

(35) 

Inserted into Eqn. (50), (jU) implies a linear increase in transition 

Reynolds number with Mach number, while (55) leads to 

M 
Ö75- 

(56) 

Relation (55) will be used in the following comparisons because it is based 

on more complete calculations, although it will be seen that use of (5^) 

would yield slightly better correlations. Several other effects of Mach 

number may be anticipated, including an increase in c/U (which was observed 

in Reference 6), an increase in tunnel wall boundary layer thickness, and 

possible effects on a and cr. No attempt to include these effects will be 

made, however. There are no definitive data on which to base such calcula- 

tions, and it will be seen that the frequency effect is probably the largest 

single factor in the present range of interest. 

Experimental data from References 1 and 17 are compared with the 

predicted Mach number effect in Figure 11. The data are taken from three 

■ 
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different wind tunnels and for four different freeatream Mach numbers.  By 

varying the angle-of-attack froEi zero to 15 degrees, the local Mach number 

range in the Reference 1 tests was extended down to about 5.95.  The data 

shown are for nominally sharp leading-edge models; the leading-edge diameter 

of the Reference 1 model was about .001 in. and that of the Reference 17 

model was about .002 in.  Data are given in both references for the "begin- 

ning" and "end" of transition as previously defined. 

As may be seen in Figure 11, the proposed correlation parameter groups 

the end of transition data closely over a range of unit Reynolds numbers of 

almost an order of magnitude. The beginning transition data show much more 

scatter, but, as in Figure 10, it will be seen that much of the scatter is 

present in the original data at a given unit Reynolds number, and is not due 

to poor correlation of the data for the various unit Reynolds numbers. 

Both sets of data exhibit a consistent increase with Mach number that 

is in good agreement with the predicted Mach number effect up to a Mach 

number of about 8.  At Mach 10, however, the data are well above the predic- 

tion. In view of the close agreement for Mach numbers from k  to 8, it 

appears that some additional effect may be present in the Mach 10 data. The 

increase in c/u, as estimated from the data of Reference 6 would increase 

the predicted Mach number effect by only about 10 percent at Mach 10. The 

use of (JU) rather than (35) in deriving (56) would also increase the pre- 

diction by about 10 percent, and so further improve the agreement.  However, 

(35) seems preferable to (3'+) on theoretical grounds, and it is felt that 

another explanation for the discrepancy at Mach 10 is required. 

The difference could be attributed to the differences of individual 

wind tunnels, since only one of the three tunnels could produce Mach 10 flow. 

However, data were taken in the Mach 10 tunnel at 10 degrees angle-of-attack 

are in agreement with the data from the other tunnels for the same local 

Mach number (Reference l), indicating that the discrepancy at Mach 10 is 

an authentic Mach number effect, and not due to wind-tunnel differences. 

A possible explanation is that the characteristic spreading angle, tan" a, 

is decreased at very high Mach numbers. Such a reduction does not seem 

unreasonable, but no experimental support for this conjecture is available. 
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Other Experimental Results 

The quantity of experimental data shown in this paper is relatively- 

limited, and deliberately so. First, only data from flat plates or hollow 

cylinders having sharp leading edges are considered. This restriction seems 

necessary since the assumptions made regarding turbulent spots are based on 

observations for those geometries. Some elementary considerations indicate 

that the assumptions used here may not apply to cones, for example, as noted 

in Reference 18. 

Second, only data from conventional wind tunnels is considered. In 

very short duration experiments, as are conducted in ballistic ranges, it is 

felt that vibrations induced by the starting or launching process may affect 

the data. Also, the effects of roughness may be important on the small models 

usually used in ballistic range experiments. This is not to say that such 

effects are present, merely that some question exists. In fact, data from 

both types of facilities exist that support the results given here. 

A third restriction has been imposed, namely, that the data shown 

are obtained by the surface pitot pressure method. It is known that the 

various methods of observing transition do not all yield identical values. 

It is of course possible that the differences between transition Reynolds 

numbers given by the various methods may be a function of the flow conditions, 

which would perhaps lead to spurious trends. 

The quality of reporting is also a criterion for data selection. In 

all too many cases, the author merely presents "transition Reynolds numbers" 

without specifying just what point in the transition zone he thought he was 

measuring. Only broad trends can be obtained from such reports. 

The amount of data meeting all these requirements is rather limited, 

particularly for Mach numbers greater than h,  the approximate lower limit of 

the present comparisons. The author has, of course, reviewed much data not 

meeting all these conditions, and generally, the same trends have been 

observed. Some of these comparisons are given in Reference 1, The com- 

parisons presented here include all of the applicable data from the reference 

reports, even to the very low "end transition" point at Mach 6, shown in Figure 

11, which is a very suspicious looking point, to say the leasto 
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Concl-udinK Remarks - Transition Theory 

It has been shown that some of the observed trends in hypersonic 

boundary layer transition are predicted by a heuristic theory of the type 

originally formulated by Emraons in Reference }.    Although the theory is 

semi-empirical, the assumptions employed in its development are not based 

on the experimental data to which it is finally compared. It will be re- 

called that each of the assumptions is based on either direct observations 

of turbulent spots, wind tunnel noise experiments or stability theory. Thus 

the rather good predictions that have been obtained are very encouraging, 

since a certain, consistency of transition phenomena over a wide speed range 

seems to be implied. 

The extension of the theory to geometries other than those considered 

here is easily possible, but the results of such calculations will depend 

strongly on the assumptions that are made regarding the effect of geometry 

on the properties of turbulent spots. There are a sufficient number of 

variables appearing in Eqn. (27) that could be adjusted so that good agree- 

ment with experimental results could be obtained, but it seems preferable 

to await some definitive ob&ervations of turbulent spots or some theoretical 

treatment of the turuulent spots. However, it seems likely that rules 

derived here may apply to more general situations than those assumed. For 

example, experimental results have shown that there is a unit Reynolds number 

effect of approximately the magnitude predicted here in transition data 

obtained from both boundary layers and wakes generated by cones in hypersonic 

flight. Also, the Mach number trend of the data shown in Figure 11 closely 

parallels that observed in wake data, as shown in Reference lo 

It has, of course, previously been suggested that the unit Reynolds 

number effect was somehow related to external disturbances, although no 

quantitative rule has been derived, to the author's knowledge. If it is 

assumed that the unit Reynolds number effect is causer' by variations in 

turbulent intensity, it is then necessary to assume that the boundary layer 

becomes very stable at high Mach numbers, since it has been shown experi- 

mentally that the intensity of free stream disturbances increases rapidly 

with Mach number. However, .  sef s that this line o: thought cannot explain 
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the data of Reference 1 (quoted in Figure 11) which shows that the data 

from all angles-of-attack fall onto a single curve when plotted as a 

function of local Mach number and local Reynolds number. Rather, one would 

expect that at a given local Mach number the transition Reynolds number 

would decrease with increases in freestream Mach number, due to the increase 

in the intensity of the external disturbances. No such difficulty arises in 

the present theory. 

A further difficulty with the tunnel noise explanation of the unit 

Reynolds number effect is the existence of the effect in ballistic range 

data where there is no external noise. In the present theory, it becomes 

necessary to discover how 'X2 is determined for the ballistic range experi- 

ments. In the absence of any other obvious characteristic length, it is 

suggested that perhaps 1%     is determined by the model size or by surface 

roughness. Surface roughness may seem like the most likely candidate, since 

one can visualize a stream of spots emanating from a roughness element. There 

are, however, experiments indicating that roughness has very little effect at 

hypersonic speeds. Considering the violent conditions of model launching in 

a ballistic range experiment, it seems possible that the model may vibrate 

during the entire experiment and that this vibration may be the source of the 

initial disturbance that causes transition to occur. In that case, \z   could 

be determined by the mode shapes of the vibrating model, which, for a given 

model, would be the same for an entire series of experiments. According to 

Eqn. (27) then, the transition Reynolds number would increase as the square 

root of the unit Reynolds number (provided that xc « Xp, as before). In 

fact, such a trend has been observed in cone experiments, but this cannot be 

taken as confirmation of the present analysis due to the geometric differences. 

However, the relation of A ^ to body size can, perhaps, explain some of the 

dlscrepency between rocket experiments and ballistic range data (see References 

6 and 2%,  for example). If the condition ^«M.^  is not satisfied in flight, 

the effect of unit Reynolds numbers would be less than the square root variation 

since the first term in Eqn. (29) would no longer be negligible. 

If  ^E   is determined by surface roughness, then it is not clear 

what effect the unit Reynolds number will have. Increasing the unit Reynolds 
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nvunber will thin the boundary layer and may actually reduce the transition 

Reynolds number. If the roughness elements are sufficiently large, however, 

the location of transition may be fixed independently of the Reynolds number. 

In this event, the transition Reynolds number wov^ld vary linearly with the 

unit Reynolds number. One would expect that roughness effects are most 

important in ballistic range experiments where the models are usually small 

and the unit Reynolds number is often rather large. Some combination of the 

various effects discussed here may explain the relatively large unit Reynolds 

number effect shown by the ballistic range data of Figure 8. 

Finally, the present analysis suggests a somewhat different relation 

between stability th jory and transition than that usually assumed. According 

to the final comparison given, one expects transition to be related to the 

critical frequency rather than the critical Reynolds number. Further inves- 

tigation is clearly necessary, which, ideally, would consist of direct measure- 

ments of the frequency of spot formation. 
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APPENDIX; NOMENCLATURE 

D 

f 

f* 

H 

m 

n 

P 

P 

R 

Re 

ReT 

t 

T 

u, v 

x9 y, s 

xo 
ZH 

o< 

A. 

r 
cr 

x 

velocity of turbulent spot 

specific heat at constant preasure 

■wind tunnel diameter 

dimenaionless frequency (Eqn. 23) 

frequency of spot formation 

total enthalpy 

an integer 

an integer; degree of polynomial; time level (see Table II) 

a point 

pressure 

general symbol for flow property, p , ut v, etc. 

gas constant 

Reynolds number 

normalized transition Reynolds number (Eqn. 31) 

time 

temperature 

velocity components 

cartesian coordinates 

phase angle (see Eqn. 11); point of formation of turbulent spot 

width of zone of influence 

wave number 2.TT / A  ; spot growth angle 

specific heat ratio; intermittency factor 

tunnel wall boundary layer thickness 

boundary layer displacement thickness (as in A x) increment 

wavelength 

characteristic length in Eqn. 23 

leading edge sweep angle 

viscosity 

kinematic viscosity 

density 

spot shape factor 

dimensionless time   (at/Avj)^ RT 

dimensionless time   [ue -t / 5*| 

' 
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Subscripts 

aw 

d 

D 

e 

max 

N 

P 
s 

T 

u 

w 

o 

s* 

Super Script 

n 

(dot) 

(bar) 

(prime) 

(carat) 

adiabatic wall value 

value of x for which turbulent spot reaches p 

based on tunnel diameter 

boundary layer edge value 

maximum value 

y-index at last layer for which equations of Table I are 

computed 

value at p 

spot 

value at transition 

value of x for which turbulent spot leaves p 

wall value (i.e., y B 0) 

see XQJ see Eqn. 26 

y index (Eqn. 8)j particular values (Eqns. 12 and 13) 

based on S* 

time level (see Table II) 

time derivative 

time avf-age 

fluctuating component 

amplitude (see Eqn. 11) 

* 
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